Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Asymptotic Schottky Problem

Identifieur interne : 000375 ( Main/Exploration ); précédent : 000374; suivant : 000376

The Asymptotic Schottky Problem

Auteurs : Lizhen Ji [États-Unis, République populaire de Chine] ; Enrico Leuzinger [Allemagne, États-Unis]

Source :

RBID : ISTEX:04A89C3E3CB537950A353943B13B25BE408CEABC

English descriptors

Abstract

Abstract: Let $${\mathcal{M}_g}$$ denote the moduli space of compact Riemann surfaces of genus g and let $${\mathcal{A}_g}$$ be the moduli space of principally polarized abelian varieties of dimension g. Let $${J : \mathcal{M}_g \rightarrow \mathcal{A}_g}$$ be the map which associates to a Riemann surface its Jacobian. The map J is injective, and the image $${\mathcal{J}_g := J(\mathcal{M}_g)}$$ is contained in a proper subvariety of $${\mathcal{A}_g}$$ when g ≥  4. The classical and long-studied Schottky problem is to characterize the Jacobian locus $${\mathcal{J}_g}$$ in $${\mathcal{A}_g}$$. In this paper we address a large scale version of this problem posed by Farb and called the coarse Schottky problem: What does $${\mathcal{J}_g}$$ look like “from far away”, or how “dense” is $${\mathcal{J}_g}$$ in the sense of coarse geometry? The large scale geometry of $${\mathcal{A}_g}$$ is encoded in its asymptotic cone, $${{\rm Cone}_\infty(\mathcal{A}_g)}$$, which is a Euclidean simplicial cone of real dimension g. Our main result asserts that the Jacobian locus $${\mathcal{J}_g}$$ is “coarsely dense” in $${\mathcal{A}_g}$$, which implies that the subset of $${{\rm Cone}_\infty(\mathcal{A}_g)}$$ determined by $${\mathcal{J}_g}$$ actually coincides with this cone. The proof shows that the Jacobian locus of hyperelliptic curves is coarsely dense in $${\mathcal{A}_g}$$ as well. We also study the boundary points of the Jacobian locus $${\mathcal{J}_g}$$ in $${\mathcal{A}_g}$$ and in the Baily–Borel and the Borel–Serre compactification. We show that for large genus g the set of boundary points of $${\mathcal{J}_g}$$ in these compactifications is “small”.

Url:
DOI: 10.1007/s00039-010-0049-8


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Asymptotic Schottky Problem</title>
<author>
<name sortKey="Ji, Lizhen" sort="Ji, Lizhen" uniqKey="Ji L" first="Lizhen" last="Ji">Lizhen Ji</name>
</author>
<author>
<name sortKey="Leuzinger, Enrico" sort="Leuzinger, Enrico" uniqKey="Leuzinger E" first="Enrico" last="Leuzinger">Enrico Leuzinger</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:04A89C3E3CB537950A353943B13B25BE408CEABC</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1007/s00039-010-0049-8</idno>
<idno type="url">https://api.istex.fr/document/04A89C3E3CB537950A353943B13B25BE408CEABC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000088</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000088</idno>
<idno type="wicri:Area/Istex/Curation">000088</idno>
<idno type="wicri:Area/Istex/Checkpoint">000330</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000330</idno>
<idno type="wicri:doubleKey">1016-443X:2010:Ji L:the:asymptotic:schottky</idno>
<idno type="wicri:Area/Main/Merge">000374</idno>
<idno type="wicri:Area/Main/Curation">000375</idno>
<idno type="wicri:Area/Main/Exploration">000375</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The Asymptotic Schottky Problem</title>
<author>
<name sortKey="Ji, Lizhen" sort="Ji, Lizhen" uniqKey="Ji L" first="Lizhen" last="Ji">Lizhen Ji</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematics, University of Michigan, 48109, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Zhejiang University, 310027, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
<settlement type="city">Hangzhou</settlement>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Leuzinger, Enrico" sort="Leuzinger, Enrico" uniqKey="Leuzinger E" first="Enrico" last="Leuzinger">Enrico Leuzinger</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Algebra and Geometry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geometric and Functional Analysis</title>
<title level="j" type="sub">GAFA</title>
<title level="j" type="abbrev">Geom. Funct. Anal.</title>
<idno type="ISSN">1016-443X</idno>
<idno type="eISSN">1420-8970</idno>
<imprint>
<publisher>SP Birkhäuser Verlag Basel</publisher>
<pubPlace>Basel</pubPlace>
<date type="published" when="2010-03-01">2010-03-01</date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1693">1693</biblScope>
<biblScope unit="page" to="1712">1712</biblScope>
</imprint>
<idno type="ISSN">1016-443X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1016-443X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Jacobian locus</term>
<term>Schottky problem</term>
<term>Siegel modular variety</term>
<term>asymptotic cones</term>
<term>coarse geometry</term>
<term>moduli space of Riemann surfaces</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Let $${\mathcal{M}_g}$$ denote the moduli space of compact Riemann surfaces of genus g and let $${\mathcal{A}_g}$$ be the moduli space of principally polarized abelian varieties of dimension g. Let $${J : \mathcal{M}_g \rightarrow \mathcal{A}_g}$$ be the map which associates to a Riemann surface its Jacobian. The map J is injective, and the image $${\mathcal{J}_g := J(\mathcal{M}_g)}$$ is contained in a proper subvariety of $${\mathcal{A}_g}$$ when g ≥  4. The classical and long-studied Schottky problem is to characterize the Jacobian locus $${\mathcal{J}_g}$$ in $${\mathcal{A}_g}$$. In this paper we address a large scale version of this problem posed by Farb and called the coarse Schottky problem: What does $${\mathcal{J}_g}$$ look like “from far away”, or how “dense” is $${\mathcal{J}_g}$$ in the sense of coarse geometry? The large scale geometry of $${\mathcal{A}_g}$$ is encoded in its asymptotic cone, $${{\rm Cone}_\infty(\mathcal{A}_g)}$$, which is a Euclidean simplicial cone of real dimension g. Our main result asserts that the Jacobian locus $${\mathcal{J}_g}$$ is “coarsely dense” in $${\mathcal{A}_g}$$, which implies that the subset of $${{\rm Cone}_\infty(\mathcal{A}_g)}$$ determined by $${\mathcal{J}_g}$$ actually coincides with this cone. The proof shows that the Jacobian locus of hyperelliptic curves is coarsely dense in $${\mathcal{A}_g}$$ as well. We also study the boundary points of the Jacobian locus $${\mathcal{J}_g}$$ in $${\mathcal{A}_g}$$ and in the Baily–Borel and the Borel–Serre compactification. We show that for large genus g the set of boundary points of $${\mathcal{J}_g}$$ in these compactifications is “small”.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Karlsruhe</li>
<li>Michigan</li>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
<li>Karlsruhe</li>
</settlement>
<orgName>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Ji, Lizhen" sort="Ji, Lizhen" uniqKey="Ji L" first="Lizhen" last="Ji">Lizhen Ji</name>
</region>
<name sortKey="Ji, Lizhen" sort="Ji, Lizhen" uniqKey="Ji L" first="Lizhen" last="Ji">Lizhen Ji</name>
<name sortKey="Leuzinger, Enrico" sort="Leuzinger, Enrico" uniqKey="Leuzinger E" first="Enrico" last="Leuzinger">Enrico Leuzinger</name>
</country>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Ji, Lizhen" sort="Ji, Lizhen" uniqKey="Ji L" first="Lizhen" last="Ji">Lizhen Ji</name>
</region>
</country>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Leuzinger, Enrico" sort="Leuzinger, Enrico" uniqKey="Leuzinger E" first="Enrico" last="Leuzinger">Enrico Leuzinger</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000375 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000375 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:04A89C3E3CB537950A353943B13B25BE408CEABC
   |texte=   The Asymptotic Schottky Problem
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022